Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Oncol ; 64(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666531

RESUMO

Digestive tract cancer is one of the most common types of cancers globally, with ~4.8 million new cases and 3.4 million cancer­associated deaths in 2018, accounting for 26% of cancer incidence and 35% of cancer­related deaths worldwide. S100 protein family is involved in regulating cancer cell proliferation, angiogenesis, epithelial­mesenchymal transition (EMT), metastasis, metabolism and immune microenvironment homeostasis. The critical role of S100 protein family in digestive tract cancer involves complicated mechanisms, such as cancer stemness remodeling, anaerobic glycolysis regulation, tumor­associated macrophage differentiation and EMT. The present study systematically reviewed published studies on the compositions, function and the underlying molecular mechanisms of the S100 family, as well as guidance for diagnosis, treatment and prognosis of digestive tract cancer. Systematic review of the roles and underlying molecular mechanisms of S100 protein family may provide new insight into exploring potential cancer biomarkers and the optimized therapeutic strategies for digestive tract cancer.


Assuntos
Biomarcadores Tumorais , Transição Epitelial-Mesenquimal , Proteínas S100 , Humanos , Proteínas S100/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral/imunologia , Prognóstico , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Neovascularização Patológica/metabolismo
2.
World J Microbiol Biotechnol ; 39(11): 291, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37653349

RESUMO

Colorectal cancer (CRC) is a highly prevalent gastrointestinal cancer worldwide. Recent research has shown that the gut microbiota plays a significant role in the development of CRC. There is mounting evidence supporting the crucial contributions of bacteria-derived toxins and metabolites to cancer-related inflammation, immune imbalances, and the response to therapy. Besides, some gut microbiota and microbiota-derived metabolites have protective effects against CRC. This review aims to summarize the current studies on the effects and mechanisms of gut microbiota and microbiota-produced metabolites in the initiation, progression, and drug sensitivity/resistance of CRC. Additionally, we explore the clinical implications and future prospects of utilizing gut microbiota as innovative approaches for preventing and treating CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , Amigos , Inflamação
3.
Mediators Inflamm ; 2023: 6818524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035757

RESUMO

Accumulating studies have implicated that circular RNAs (circRNAs) play vital roles in the pathogenesis of rheumatoid arthritis (RA). Dysregulation of macrophage polarization leads to immune homeostatic imbalance in RA. However, the altering effects and mechanisms of circRNAs on macrophages polarization and immune homeostatic balance remain largely unclear. We aimed to investigate the potential role of circRNA_17725 in RA. The high-throughput sequence was performed to identify the dysregulated circRNAs in RA. We confirmed the data by CCK-8, EdU, and Annexin V/PI staining to elucidate the proliferation and apoptosis. The expressions of M1/M2-associated markers were confirmed using real-time PCR and flow cytometry analysis. Luciferase reporter assay and RNA Binding Protein Immunoprecipitation (RIP) were used to demonstrate the underlying mechanism of circRNA_17725. The altering effect of circRNA_17725 on macrophages in vivo was evaluated using collagen-induced arthritis (CIA) mouse model. circRNA_17725 was demonstrated to be downregulated in peripheral blood mononuclear cells and CD14+ monocytes from RA cases in contrast to healthy controls. The negative association between circRNA_17725 and the disease activity indexes (CRP, ESR, and DAS28) was observed, suggesting a vital role of circRNA_17725 in RA disease activity. Besides, after a coexpression analysis based on high-input sequencing and the bioinformatics analysis in MiRanda and TargetScan databases, a circRNA_17725-miR-4668-5p-FAM46C competing endogenous RNA (ceRNA) network was hypothesized. A series of cytology experiments in vitro have implicated that circRNA_17725 could inhibit the proliferation but enhance the apoptosis of macrophages. Decreased expression of TNF-α, IL-1ß, and MMP-9 were observed in the supernatant of circRNA_17725-overexpressed Raw264.7 macrophages, implicating the inhibitory effect of circRNA_17725 on macrophage inflammatory mediators. Furthermore, circRNA_17725 could promote macrophage polarization towards M2 by targeting miR-4668-5p/FAM46C as a miRNA sponge. Additionally, circRNA_17725-overexpressed macrophages alleviated arthritis and protected against joint injuries and bone destruction by inducing macrophage polarization towards M2 in collagen-induced arthritis (CIA) mice. This study has suggested that circRNA_17725 regulated macrophage proliferation, apoptosis, inflammation, and polarization by sponging miR-4668-5p and upregulating FAM46C in RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Animais , Camundongos , RNA Circular/genética , RNA Circular/metabolismo , Artrite Experimental/genética , Artrite Experimental/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo
4.
Front Oncol ; 12: 954329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978828

RESUMO

Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.

5.
Microbiol Spectr ; 10(4): e0032422, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863004

RESUMO

Diabetic nephropathy (DN) is the primary cause of end-stage renal disease. Accumulating studies have implied a critical role for the gut microbiota in diabetes mellitus (DM) and DN. However, the precise roles and regulatory mechanisms of the gut microbiota in the pathogenesis of DN remain largely unclear. In this study, metagenomics sequencing was performed using fecal samples from healthy controls (CON) and type 2 diabetes mellitus (T2DM) patients with or without DN. Fresh fecal samples from 15 T2DM patients without DN, 15 DN patients, and 15 age-, gender-, and body mass index (BMI)-matched healthy controls were collected. The compositions and potential functions of the gut microbiota were estimated. Although no difference of gut microbiota α and ß diversity was observed between the CON, T2DM, and DN groups, the relative abundances of butyrate-producing bacteria (Clostridium, Eubacterium, and Roseburia intestinalis) and potential probiotics (Lachnospira and Intestinibacter) were significantly reduced in T2DM and DN patients. Besides, Bacteroides stercoris was significantly enriched in fecal samples from patients with DN. Moreover, Clostridium sp. 26_22 was negatively associated with serum creatinine (P < 0.05). DN patients could be accurately distinguished from CON by Clostridium sp. CAG_768 (area under the curve [AUC] = 0.941), Bacteroides propionicifaciens (AUC = 0.905), and Clostridium sp. CAG_715 (AUC = 0.908). DN patients could be accurately distinguished from T2DM patients by Pseudomonadales, Fusobacterium varium, and Prevotella sp. MSX73 (AUC = 0.889). Regarding the potential bacterial functions of the gut microbiota, the citrate cycle, base excision repair, histidine metabolism, lipoic acid metabolism, and bile acid biosynthesis were enriched in DN patients, while selenium metabolism and branched-chain amino acid biosynthesis were decreased in DN patients. IMPORTANCE Gut microbiota imbalance is found in fecal samples from DN patients, in which Roseburia intestinalis is significantly decreased, while Bacteroides stercoris is increased. There is a significant correlation between gut microbiota imbalance and clinical indexes related to lipid metabolism, glucose metabolism, and renal function. The gut microbiota may be predictive factors for the development and progression of DN, although further studies are warranted to illustrate their regulatory mechanisms.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Microbioma Gastrointestinal , Bacteroides , Clostridiales , Diabetes Mellitus Tipo 2/microbiologia , Nefropatias Diabéticas/microbiologia , Nefropatias Diabéticas/patologia , Humanos
6.
Immunol Invest ; 51(6): 1785-1803, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35332841

RESUMO

Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.


Assuntos
COVID-19 , Exossomos , Lúpus Eritematoso Sistêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Nefrite , Animais , Proliferação de Células , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , NF-kappa B , Linfócitos T Reguladores
7.
Front Immunol ; 12: 714832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603289

RESUMO

Systemic lupus erythematosus (SLE) is a common autoimmune connective tissue disease with unclear etiology and pathogenesis. Mesenchymal stem cell (MSC) and MSC derived extracellular vesicles (EVs) play important roles in regulating innate and adaptive immunity, which are involved in many physiological and pathological processes and contribute to the immune homeostasis in SLE. The effects of MSCs and EVs on SLE have been drawing more and more attention during the past few years. This article reviews the immunomodulatory effects and underlying mechanisms of MSC/MSC-EVs in SLE, which provides novel insight into understanding SLE pathogenesis and guiding the biological therapy.


Assuntos
Suscetibilidade a Doenças , Vesículas Extracelulares/metabolismo , Imunomodulação , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular/imunologia , Suscetibilidade a Doenças/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
Front Oncol ; 11: 801319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111681

RESUMO

Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.

9.
Cell Death Dis ; 11(10): 833, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028811

RESUMO

A number of circular RNAs (circRNAs) have been implicated in rheumatoid arthritis (RA) pathogenesis; however, little is known about their function and hidden molecular mechanism in immune and inflammation regulation. We investigated the role and the underlying mechanism of circRNA_09505 in RA in this study. Real-time PCR and fluorescence in situ hybridization (FISH) are adopted to estimate the quantitative expression and localization of circRNA_09505 in macrophages. The altering effect of circRNA_09505 on inflammation is investigated in vitro and in vivo by use of macrophage cell models and collagen-induced arthritis (CIA) mice. Luciferase reporter assay and RNA-binding protein immunoprecipitation (RIP) are used to confirm the circRNA_09505/miR-6089 ceRNA network predicted by bioinformatics analysis. Compared with controls, the expression of circRNA_09505 is upregulated in peripheral blood mononuclear cells (PBMCs) from patients with RA. The proliferation and cell cycle are significantly promoted when circRNA_09505 is upregulated in macrophages, whereas knockdown of circRNA_09505 inhibits macrophage proliferation and cell- cycle progression. Besides, circRNA_09505 can act as a miRNA sponge for miR-6089 in macrophages, and promote the production of TNF-α, IL-6, and IL-12 through ceRNA mechanism. Moreover, AKT1 is a direct target of miR-6089. CircRNA_09505 can promote AKT1 expression by acting as a miR-6089 sponge via IκBα/NF-κB signaling pathway in macrophages. Most interestingly, knockdown of circRNA_09505 significantly alleviates arthritis and inflammation in vivo in CIA mice. These data support the hypothesis that circRNA_09505 can function as a miR-6089 sponge and regulate inflammation via miR-6089/AKT1/NF-κB axis in CIA mice.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Inflamação/sangue , RNA Circular/sangue , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Proliferação de Células/fisiologia , Colágeno/farmacologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Onco Targets Ther ; 13: 9875-9885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116573

RESUMO

BACKGROUND: Mounting evidence has implicated that exosomes-delivered noncoding RNAs are key regulators in carcinogenesis. The effect of miR-548c-5p has been elucidated in some cancers. However, the role of exosomal miR-548c-5p in colorectal cancer (CRC) is not fully understood. We aim to explore the function and mechanism of exosome-delivered miR-548c-5p in CRC. The altering effect of exosome-derived miR-548c-5p on the prognosis of CRC patients is also investigated by estimating overall survival and disease-free survival. MATERIALS AND METHODS: The expression of miR-548c-5p in exosomes is determined by real-time PCR. The proliferation and invasion of CRC cells are estimated by MTT, transwell assay and scratch test. The targeted gene of miR-548c-5p is investigated by luciferase reporter assay, real-time PCR, Western blot and chromosome immunoprecipitation (CHIP) assay. CRC cells are transplanted subcutaneously in BALB/c nude mice to estimate their growth in vivo. RESULTS: MiR-548c-5p derived from CRC cell exosomes inhibits the proliferation and invasion of CRC cells in vitro. Exosomal miR-548c-5p can also prevent from colorectal carcinogenesis in nude mice in vivo. HIF1A is documented to be a target of miR-548c-5p, and HIF1A can targetedly regulate CDC42 in CRC cells. Exosomal miR-548c-5p affects CRC cell growth, migration and invasion via miR-548c-5p/HIF1A/CDC42 axis. In addition, exosomal miR-548c-5p can be a predictive factor for CRC prognosis. CONCLUSION: Our study has suggested that exosomal miR-548c-5p can regulate CRC through HIF1A/CDC42 axis, which helps to understand CRC pathogenesis more clearly and identify novel therapeutic strategies for CRC patients.

11.
World J Stem Cells ; 12(8): 879-896, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32952864

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) have been reported to possess immune regulatory effects in innate and adaptive immune reactions. MSCs can mediate intercellular communications by releasing extracellular vesicles (EVs), which deliver functional molecules to targeted cells. MSC derived EVs (MSC-EVs) confer altering effects on many immune cells, including T lymphocytes, B lymphocytes, natural killer cells, dendritic cells, and macrophages. A large number of studies have suggested that MSC-EVs participate in regulating autoimmunity related diseases. This characteristic of MSC-EVs makes them be potential biomarkers for the diagnosis and treatment of autoimmunity related diseases. AIM: To verify the potential of MSC-EVs for molecular targeted therapy of autoimmunity related diseases. METHODS: Literature search was conducted in PubMed to retrieve the articles published between 2010 and 2020 in the English language. The keywords, such as "MSCs," "EVs," "exosome," "autoimmunity," "tumor immunity," and "transplantation immunity," and Boolean operator "AND" and "NOT" coalesced admirably to be used for searching studies on the specific molecular mechanisms of MSC-EVs in many immune cell types and many autoimmunity related diseases. Studies that did not investigate the molecular mechanisms of MSC-EVs in the occurrence and development of autoimmune diseases were excluded. RESULTS: A total of 96 articles were chosen for final reference lists. After analyzing those publications, we found that it had been well documented that MSC-EVs have the ability to induce multiple immune cells, like T lymphocytes, B lymphocytes, natural killer cells, dendritic cells, and macrophages, to regulate immune responses in innate immunity and adaptive immunity. Many validated EVs-delivered molecules have been identified as key biomarkers, such as proteins, lipids, and nucleotides. Some EVs-encapsulated functional molecules can serve as promising therapeutic targets particularly for autoimmune disease. CONCLUSION: MSC-EVs play an equally important part in the differentiation, activation, and proliferation of immune cells, and they may become potential biomarkers for diagnosis and treatment of autoimmunity related diseases.

12.
Cancer Lett ; 488: 18-26, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32473243

RESUMO

MicroRNAs (miRNAs) are gene modulators essential for biological processes. However, the precise functions of miRNAs in growth and development of colon cancer are still elusive. To clarify their role, here we analyzed a miRNA microarray of colon cancer. MiR-182-5p was found markedly downregulated in colon cancer tissues and cells, and strongly correlated with pathological stage, differentiation, and lymphatic metastasis. In vitro, miR-182-5p overexpression repressed colon cancer cell proliferation, colony formation, migration, and invasion, and triggered G1 arrest and apoptosis. MiR-182-5p overexpression also downregulated vascular endothelial growth factor (VEGF)-C and inhibited the activity of a luciferase reporter containing the VEGF-C 3'-untranslated region. Moreover, miR-182-5p overexpression in colon cancer cells and human umbilical vein endothelial cells (HUVECs) downregulated VEGF-A as well as VEGF receptor (VEGFR)-2 and VEGFR-3, thereby inhibiting the phosphorylation of ERK and AKT. In vivo, miR-182-5p overexpression strikingly suppressed oncogenicity of SW620 cells as well as angiogenesis and lymphangiogenesis of xenograft tumors in nude mice. These data indicate that miR-182-5p regulates colon cancer tumorigenesis partially through modulating angiogenesis and lymphangiogenesis by targeting VEGF-C, and inhibiting ERK and AKT signaling pathways.


Assuntos
Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/genética , Linfangiogênese/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Carcinogênese/genética , Regulação para Baixo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/fisiologia
13.
J Cell Biochem ; 121(2): 1061-1071, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31452237

RESUMO

Previous studies have implicated protein tyrosine phosphatase receptor type O (PTPRO) as a key regulator in inflammation-associated diseases; however, its role in ulcerative colitis (UC) remains largely unknown. Thus, we aim to elucidate the potential role and underlying mechanism of PTPRO in UC. In this study, increased expression of PTPRO, toll-like receptor (TLR4) and inflammatory cytokines were observed in mucosal tissues (MTs) from inflamed areas and lamina propria mononuclear cells (LPMCs) of patients with UC compared with those from healthy controls. Then, it was manifested that PTPRO promoted the expression of TLR4 and proinflammatory cytokines in lipopolysaccharide-induced (LPS-induced) inflammatory macrophage model. Besides, PTPRO inhibited the proliferation of intestinal epithelial cells (IECs) but enhanced the apoptosis of IECs in macrophages. Moreover, levels of phosphorylated nuclear factor κB (NF-κB)/p65 and inhibitor of NF-κB α (IκBα) were more significantly increased in PTPRO overexpressed macrophages. In addition, the area under receiver operating characteristic curve was 0.807 (95%CI = 0.686-0.958, P < .001) suggesting PTPRO as an ideal diagnostic marker for UC. Taken these, the present study shows strong evidence that PTPRO exaggerates inflammation in UC via TLR4/NF-κB signaling pathway.


Assuntos
Colite Ulcerativa/complicações , Inflamação/patologia , Macrófagos/patologia , NF-kappa B/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Receptor 4 Toll-Like/metabolismo , Apoptose , Estudos de Casos e Controles , Citocinas/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Receptor 4 Toll-Like/genética
14.
Mediators Inflamm ; 2019: 8128501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827380

RESUMO

Accumulated studies have implicated microRNAs (miRNAs) exert modifying effects on colorectal cancer (CRC). Protein tyrosine phosphatase, receptor type O (PTPRO) has been identified as a tumor suppressor in several kinds of cancer, including CRC. Previously, we have found that exosome-encapsulated miR-6803-5p is increased in CRC. However, the mechanism of miR-6803-5p in CRC is not clear yet. This study is aimed at elucidating the effect of miR-6803-5p in colorectal carcinogenesis. Expression of miR-6803-5p and PTPRO mRNA in peripheral blood mononuclear cells of CRC patients is estimated by real-time PCR. PTPRO protein in CRC cells is detected by western blot. To verify the association of miR-6803-5p with PTPRO, luciferase reporter assay is performed. CCK-8 and EdU assays are conducted to assess cell proliferation. Real-time PCR and ELISA are applied to detect cytokine expression in CRC cells. Cell invasion and migration assays are evaluated by transwell and scratch tests. Immunofluorescence is carried out to determine the activation of NF-κB in HCT116 cells. Negative correlation is demonstrated between miR-6803-5p and PTPRO in CRC. PTPRO is demonstrated to be a direct target of miR-6803-5p. miR-6803-5p can promote cancer cell proliferation and invasion and enhance inflammation through PTPRO/NF-κB axis in CRC, which serves as a useful target for CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Western Blotting , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HCT116 , Humanos , Inflamação/genética , Inflamação/imunologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase
15.
Mediators Inflamm ; 2019: 3120391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772500

RESUMO

Methyltransferase-like 3 (METTL3), an RNA N6-methyladenosine (m6A) methyltransferase, is essential for the m6A mRNA modification. As a key enzyme of m6A methylation modification, METTL3 has been implicated in immune and inflammation regulation. However, little is known of the role and underlying mechanism of METTL3 in rheumatoid arthritis (RA). The aim of the present study is to elucidate the function and potential mechanism of METTL3 in RA pathogenesis. We used quantitative real-time polymerase chain reaction to detect the expression of METTL3 in RA patients and controls as well as the macrophage cell line. CCK-8 was used for cell proliferation assay. Enzyme-linked immunosorbent assay (ELISA) was adopted to estimate the generation of IL-6 and TNF-α in macrophages. Western blot and immunofluorescence were applied to evaluate the activation of NF-κB in macrophages. The expression of METTL3 was significantly elevated in patients with RA. It was positively associated with CRP and ESR, two common markers for RA disease activity. Besides, LPS could enhance the expression and biological activity of METTL3 in macrophages, while overexpression of METTL3 significantly attenuated the inflammatory response induced by LPS in macrophages. Moreover, the effect of METTL3 on LPS-induced inflammation in macrophages was dependent on NF-κB. This study firstly demonstrates the critical role of METTL3 in RA, which provides novel insights into recognizing the pathogenesis of RA and a promising biomarker for RA.


Assuntos
Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metiltransferases/metabolismo , NF-kappa B/metabolismo , Idoso , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Metiltransferases/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Células THP-1
16.
Front Immunol ; 10: 2218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620132

RESUMO

Accumulating studies have suggested that long non-coding RNAs (lncRNAs) have drawn more and more attention in rheumatoid arthritis (RA), which can function as competitive endogenous RNAs (ceRNAs) in inflammation and immune disorders. Previously, we have found that lncRNA HIX003209 is differentially expressed in RA. However, the precise mechanism of lncRNA HIX003209 in RA is still vague. We aim to elucidate the role and its targeted microRNA of lncRNA HIX003209 in RA as ceRNA. Significantly increased expression of lncRNA HIX003209 was observed in the peripheral blood mononuclear cells (PBMCs) from RA cases. It was positively associated with TLR2 and TLR4 in RA. Besides, peptidoglycan (PGN) and lipopolysaccharide (LPS) could enhance the expression of lncRNA HIX003209, which reversely promoted the proliferation and activation of macrophages through IκBα/NF-κB signaling pathway. Moreover, HIX003209 was involved in TLR4-mediated inflammation via targeting miR-6089 in macrophages. LncRNA HIX003209 functions as a ceRNA and exaggerates inflammation by sponging miR-6089 through TLR4/NF-κB pathway in macrophages, which offers promising therapeutic strategies for RA.


Assuntos
Artrite Reumatoide/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Artrite Reumatoide/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/genética , Inflamação/imunologia , Masculino , MicroRNAs/imunologia , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/imunologia , RNA Longo não Codificante/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
17.
Front Immunol ; 10: 3129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32047497

RESUMO

Rheumatoid arthritis is a common systemic and autoimmune disease characterized by symmetrical and inflammatory destruction of distal joints. Its primary pathological characters are synovitis and vasculitis. Accumulating studies have implicated the critical role of non-coding RNAs (ncRNAs) in inflammation and autoimmune regulation, primarily including microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). NcRNAs are significant regulators in distinct physiological and pathophysiological processes. Many validated non-coding RNAs have been identified as promising biomarkers for the diagnosis and treatment of RA. This review will shed some light on RA pathogenesis and be helpful for identifying potential ncRNA biomarkers for RA.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/patologia , RNA não Traduzido , Animais , Biomarcadores , Humanos
18.
J Cell Physiol ; 234(2): 1502-1511, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30132861

RESUMO

Exosome-encapsulated microRNAs (miRNAs) have been identified as potential biomarkers in autoimmune diseases. However, little is known about the role of exosome-delivered miRNAs in rheumatoid arthritis (RA). In this study, we investigated the profile of specific exosomal miRNAs by microarray analysis of serum exosomes from three patients with RA and three healthy controls. Quantitative real-time PCR (qRT-PCR) was performed to validate the aberrantly expressed exosomal miRNAs. A total of 20 exosome-encapsulated miRNAs were identified to be differently expressed in the serum of patients with RA compared with controls. Interestingly, we found that exosome-encapsulated miR-6089 was significantly decreased after validation by qRT-PCR in serum exosomes from 76 patients with RA and 20 controls. Besides, miR-6089 could inhibit lipopolysaccharide (LPS)-induced cell proliferation and activation of macrophage-like THP-1 cells. TLR4 was a direct target for miR-6089. MiR-6089 regulated the generation of IL-6, IL-29, and TNF-α by targetedly controlling TLR4 signaling. In conclusion, exosome-encapsulated miR-6089 regulates LPS/TLR4-mediated inflammatory response, which may serve as a novel, promising biomarker in RA.


Assuntos
Artrite Reumatoide/metabolismo , Proliferação de Células , Exossomos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , MicroRNAs/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Exossomos/genética , Feminino , Humanos , Interferons/metabolismo , Interleucina-6/metabolismo , Interleucinas/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais , Células THP-1 , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
J Cell Biochem ; 120(2): 1133-1140, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315763

RESUMO

Currently published studies have implicated that microRNAs (miRNAs) including exosomes-encapsulated miRNAs play a critical role in rheumatoid arthritis (RA). Previously, we have found that exosomes-encapsulated miR-548a-3p was significantly decreased in serum samples from RA patients by miRNAs microarray analysis. However, little is known of the role of miR-548a-3p in the development and progression of RA. In this study, we aim to investigate the underlying molecular mechanisms of miR-548a-3p in RA, which will provide new insight into understanding the pathogenesis of RA and identifying novel therapeutics targets for this disease. As validated by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of miR-548a-3p in serum exosomes and peripheral blood mononuclear cells (PBMCs) of RA patients (n = 76) was obviously down-regulated compared with healthy controls (n = 20). Serum exosomal miR-548a-3p was negatively associated with levels of CRP, RF, and ESR in serum of patients with RA. MiR-548a-3p could inhibit the proliferation and activation of pTHP-1 cells by regulating the TLR4/NF-κB signaling pathway. Accordingly, exosomes-delivered miR-548a-3p may be a critical factor predicting the disease activity of RA. MiR-548a-3p/TLR4/NF-κB axis can serve as promising targets for RA diagnosis and treatment.

20.
J Cell Physiol ; 233(11): 8815-8825, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29806703

RESUMO

We performed a systematic review of genome-wide gene expression datasets to identify key genes and functional modules involved in the pathogenesis of systemic lupus erythematosus (SLE) at a systems level. Genome-wide gene expression datasets involving SLE patients were searched in Gene Expression Omnibus and ArrayExpress databases. Robust rank aggregation (RRA) analysis was used to integrate those public datasets and identify key genes associated with SLE. The weighted gene coexpression network analysis (WGCNA) was adapted to identify functional modules involved in SLE pathogenesis, and the gene ontology enrichment analysis was utilized to explore their functions. The aberrant expressions of several randomly selected key genes were further validated in SLE patients through quantitative real-time polymerase chain reaction. Fifteen genome-wide gene expression datasets were finally included, which involved a total of 1,778 SLE patients and 408 healthy controls. A large number of significantly upregulated or downregulated genes were identified through RRA analysis, and some of those genes were novel SLE gene signatures and their molecular roles in etiology of SLE remained vague. WGCNA further successfully identified six main functional modules involved in the pathogenesis of SLE. The most important functional module involved in SLE included 182 genes and mainly enriched in biological processes, including defense response to virus, interferon signaling pathway, and cytokine-mediated signaling pathway. This study identifies a number of key genes and functional coexpression modules involved in SLE, which provides deepening insights into the molecular mechanism of SLE at a systems level and also provides some promising therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Lúpus Eritematoso Sistêmico/genética , Citocinas/genética , Redes Reguladoras de Genes/genética , Humanos , Interferons/genética , Lúpus Eritematoso Sistêmico/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...